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Summary. Ocean phytoplankton played a central role in oxygenating our planet’s 
atmosphere billions of years ago. Hence these early “geoengineers” were crucial for 
the evolution of life on Earth. Their modern-day ancestor, the marine cyanobacterium 
Prochlorococcus, is the most abundant photosynthetic cell on the planet. Its discovery 
30 years ago served as a reminder of how little we understand about the complexities 
of marine food webs.  Yet proposals to fertilize the oceans, either to mitigate climate or 
enhance fisheries, continue to gain momentum both within the scientific community 
and in the commercial sector. If implemented, the unintended consequences of these 
and other geoengineering proposals are likely to be enormous, and impossible to 
anticipate. [Contrib Sci 10:7-15 (2014)]
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The most ubiquitous, important, and profound dimension of 
life on Earth is the process of photosynthesis. Had some an-
cient marine microorganism not acquired a key mutation 
some 3.5 billion years ago, allowing it to split water instead of 
hydrogen sulfide, the evolution of life on Earth would have 
taken an entirely different trajectory. Photosynthesis was the 
ultimate “disruptive technology” of its day—converting car-
bon dioxide gas into organic carbon molecules using solar 
energy and splitting water—releasing oxygen gas. Over bil-
lions of years oxygen transformed the very nature of our 
planet, making it possible for more complex forms of life to 
evolve and spread across the Earth. As that oxygen accumu-
lated in the atmosphere, organic carbon was buried and 

compressed—becoming fossil fuel and accumulating over 
billions of years. This is the “buried sunlight” humans began 
to exploit a few hundred years ago, changing profoundly our 
civilization and its relationship to the natural world. 

Picocyanobacteria—micron-sized unicells that thrive through
out the oceans—are the modern-day descendants of the an-
cient metabolic engineers that oxidized our planet. The sister 
clades Prochlorococcus and Synechococcus co-exist over vast 
regions of the tropical and subtropical oligotrophic oceans. Their 
global populations are roughly 1027 cells [41] and in some places 
they account for over 50% of the total photosynthetic biomass 
[16]. Since the oceans contribute just less than half of the global 
photosynthesis (35–50 Gtones of carbon per year, Gt C y–1) these 
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tiny cells single-handedly play a central role in global metabo-
lism. Given their global significance, it is somewhat astonishing 
(and humbling) that Synechococcus was not discovered until 
1979 [20,54] and Prochlorococcus in 1988 [9]. We can derive 
some comfort, however, from the fact that Ramon Margalef 
imagined the existence of these types of cells as he developed 
his theory of phytoplankton succession. He represented the 
phase space occupied by different eukaryotic phytoplankton 
groups as bounded by gradients of nutrients and turbulence, 
and identified a “void” in the southeast quadrant of his now-fa-
mous Mandala (Fig. 1). I am told that he predicted that there 
had to be some group of small phytoplankton that would fill this 
“void” in the diagram (Celia Marassé, pers. comm.), and indeed 
that is precisely where picocyanobacteria would fit.

Prochlorococcus, mandalas within man-
dalas

As the smallest of the picocyanobacteria, Prochlorococcus 
embodies the minimal amount of information—2000 
genes—that can generate life from solar energy and inorgan-

ic compounds. After its discovery we wondered how some-
thing so simple could be so ubiquitous, as general ecological 
theory would suggest such a system to be very unstable. The 
answer is, of course, that Prochlorococcus is not a single en-
tity. It consists of unknown numbers of ecotypes, each with 
slightly different fitnesses along environmental gradients—in 
a sense creating a mandala of their own within the “void” 
space in Margalef’s mandala. The relative abundance of 
these ecotypes shifts slightly as ocean conditions shift, insur-
ing the stability of “the collective”—or “Prochlorococcus fed-
eration” as we sometimes call it (Fig. 2). The diversity within 
the collective is astounding. Each cell has about 1200 core 
genes that it has in common with all 1027 Prochlorococcus in 
the oceans [24]. The remaining 800 or so genes making up 
the complete genome are only shared with some other cells 
and to varying degrees. So although each cell has roughly 
2000 genes, the “collective genome” or “distributed genome” 
of the 1027 members of the global Prochlorococcus federation 
is estimated to be 83,000 genes [2]. It is this collective gene 
pool that enables it to consistently occupy such a broad range 
of oceanic conditions. 

What are the functions of the genes that give Prochloro­
coccus its collective diversity? This puzzle continues to unra
vel, but to date there are a number of niche axes upon which 
selection has operated to drive Prochlorococcus differentiation. 
These include adaptations to different light intensities, tem-
perature sources and concentrations of essential nutrients 
such as phosphorus, nitrogen and iron, and defense mech
anisms for different types of viruses (phage) that infect them 
[12]. More recently we have learned that some ‘ecotypes’ of 
Prochlorococcus can utilize organic carbon compounds includ
ing glucose [17] and amino acids [57], introducing further 
complexity and drawing attention to mixotrophy as an impor-
tant dimension of the existence of some Prochlorococcus lin-
eages. 

What has also come to light as we begin to appreciate the 
diversity within Prochlorococcus is the degree to which the 
phages that infect them play a role in generating this diversi-
ty. Phages acquire genes from host cells during infection and 
use them to guide host metabolism [25,47]. These genes are 
subjected to different selective pressures while in the phage 
and thus evolve in ways that would not happen in the host 
cell. As such, phages are diversity generators for key genes 
involved in the cellular machinery of the host, providing great 
grist for the natural selection mill. These evolving genes can, 
in principle, reintegrate into the host’s chromosome at any 
time, introducing variety for selection to operate upon. We 
find that many of the “niche-defining” genes in a particular 
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Fig. 1. Margalef’s marine mandala showing the relationship between nutri-
ent availability, turbulence, size and the niche space of characteristic genera. 
The diagonal line is the main sequence of succession and the arrow marks 
the progression from R-selected to K-selected groups as well as general size 
progression. Margalef predicted that there would be some group of phyto-
plankton yet-to-be discovered that would fill the void in the SE quadrant. 
Picocyanobacteria fill that void. Adapted from [30].
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Prochlorococcus lineage are located in hyper-variable island 
regions of the genome, and these regions have signs that 
phage are involved in shuttling their genes around [13].

The iron hypothesis

Prochlorococcus thrives in the most nutrient impoverished 
regions of the oceans. Their chemical composition is finely 
tuned to the austerity of the oligotrophic ocean habitat, and 
has features that reflect this. Their lipids, for example, consist 
primarily of sulfo- rather than phospho-lipids, reflecting the 
extremely low concentrations of phosphorus in their habitat 
[50], and over 90% of the phosphorus in a Prochlorococcus 
cell is in its nucleotides [53]. There is also evidence of N-spar-
ing in the amino acids that it uses in its proteins [18]. But 
Prochlorococcus also thrives in equatorial pacific waters 
which are among the so called “high nutrient-low chloro-
phyll” (HNLC) regions of the oceans where iron limitation 

prevents phytoplankton from assimilating available nitrogen 
and phosphorus. And it is these Prochlorococcus that ulti-
mately drew me into a debate about ocean stewardship and 
geoengineering (Fig. 3). 

In the early 1980s one of the questions troubling oceanog-
raphers was: “Why aren’t equatorial Pacific waters greener?” 
There are abundant N and P supplies in these regions as a re-
sult of equatorial upwelling, but phytoplankton are not able to 
assimilate them and grow to densities one would expect [8]. 
John Martin had already shown that if you put equatorial Pa-
cific water in bottles and add iron—in effect pushing the sys-
tem into the northeast quadrant of Margalef’s mandala—phy-
toplankton did indeed bloom [33]. Even with this evidence, 
some oceanographers were slow to accept the “iron hypoth-
esis” so Martin designed the definitive experiment—one that 
would circumvent all criticism about the potential “bottle ef-
fects” in his experiments. He designed, and his team imple-
mented, the first unenclosed open-ocean fertilization experi-
ment, IRONEX-I, in which iron was added to a 100-km2 patch of 
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Fig. 2. Prochlorococcus, the collective, consists of high- and low-light adapted ecotypes with sub-clades within each group (represented here in a ‘cartoon 
tree’) (A). The ocean habitat has strong vertical gradients of light, temperature, and nutrients (C), and the ecotypes distribute themselves along these gradi-
ents in ways that are consistent with their growth optima as a function of light intensity (B). Strains from the two clades within the HL adapted group (green 
and yellow) have different temperature tolerance ranges (D), and the relative abundances of cells belonging to these clades along longitudinal temperature 
gradients are consistent with these physiological optima (E). Strong seasonal forcing drives seasonal succession in ecotype abundances that are repeated with 
great regularity from year to year (F). The “eNATL” ecotype in particular is able to withstand the fluctuating light due to deep winter mixing much better than 
the other low-light adapted strains [1,21,28,36,55,56].
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ocean, and the response of the phytoplankton community 
was followed for several weeks. The results were unambig
uous [32]. Iron addition created a large phytoplankton bloom, 
dominated by diatoms, and the drawdown of excess nitrogen.

IRONEX-I was followed by IRONEX-II, and my laboratory was 
fortunate enough to participate in those historic experiments to 
study how Prochlorococcus—not known to be a bloom for-
mer—responded to release from iron limitation. True to form, 
their population sizes held steady throughout the iron-induced 
diatom bloom, but their cell division rates doubled, proving that 
even the smallest cells in the community were severely iron lim-
ited [29]. Population sizes held constant because the microzoo-
plankton that eats Prochlorococcus responded to the increased 
supply of cells and kept their numbers in check. What is unclear 
from these experiments, and all that followed [4], is how these 
communities would respond to sustained iron enrichment.

The expanded iron hypothesis

John Martin not only hypothesized that iron limits HNLC areas 
of the contemporary ocean but he also suggested that varia-
tions in the availability of iron to the oceans could have 
played a role in regulating Earth’s past glacial/interglacial cy-
cles. He saw evidence of coupling between iron dust flux to 
the oceans and atmospheric CO2 concentrations suggesting 

that iron-stimulated blooms of plankton in the southern 
ocean played a role in the drawdown of atmospheric CO2. 
The inference was that this played a role in cooling the Earth 
on geological time scales [31]. This idea spread like wildfire in 
the popular press as people began to postulate that perhaps 
one could reduce the growing fossil fuel-derived CO2 load to 
the atmosphere by fertilizing the oceans with iron. Indeed, 
John Martin planted the seed for this idea when he made the 
now famous remark “Give me a half-tanker of iron and I will 
give you an ice age” while giving a lecture on his theory about 
the climate connection [8]. 

Over the years since Martin made that statement, the 
iron fertilization approach to mitigate climate change has re-
ceived attention in many circles. Although never explicitly 
stated, this application was a subtext for the numerous ocean 
iron fertilization experiments designed to explore various di-
mensions of “the iron hypothesis” [4]. While none of those 
experiments were studying iron fertilization as a “geoengin
eering tool”, the focus of the experiments coalesced on 
studying how much carbon could be captured in an iron-en-
riched bloom, and what fraction of this might be exported to 
deeper waters where it would be isolated from the atmo-
sphere. Much less attention was given to studying the food 
web and down stream biogeochemical consequences of iron 
enrichment or the potential unintended consequences of 
scaled-up versions of these experiments. This single minded 
focus—CO2 drawdown and carbon export below the surface 
mixed layer—and the language used in research papers, for 
example “… iron triggered a massive phytoplankton bloom 
which consumed large quantities of carbon dioxide…” [11] 
fueled coverage of the experiments in the popular press from 
the perspective of geoengineering potential. Entrepreneurs 
were in turn drawn by the allure of being able to control an 
ecosystem with such a small quantity of a relatively cheap 
and “natural” substance. 

One can understand the appeal. Because phytoplankton 
requires very little iron relative to nitrogen and phosphorus 
to fix carbon and grow, if the latter is available in excess, a 
tiny amount of iron can make them available to the phyto-
plankton by freeing the iron bottleneck. Sunlight is free, acre-
age (the ocean commons beyond the 200 mile limit) is free, 
and so is the nitrogen and phosphorus “fertilizer” in ocean 
waters. Iron is relatively cheap, and now it has been demon-
strated over and over that if you add iron to certain regions of 
the oceans they turn green with phytoplankton relatively 
quickly. But despite the allure, there are many good argu-
ments, based on what we already know about how ocean 
ecosystems function, that iron fertilization is not a viable op-
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Fig. 3. Geoengineering comes of age. The number of citations of papers on 
geoengineering has increased dramatically in the past decade (Source: ISI 
Web of Knowledge, Web of Science).
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tion for mitigating climate change [7,45,46]. First, ocean fer-
tilization causes a shift in the phytoplankton community thus 
changing the structure of the entire food web that depends 
on it. This is not an unintended consequence but rather it is 
the intended consequence of the perturbation. Without this 
shift there would be no bloom because only certain species 
capable of rapid growth dominate an iron-induced bloom. 
Second, when phytoplankton bloom and synthesize massive 
amounts of organic carbon, bacteria consume the carbon, 
and in doing so they consume oxygen, changing the redox 
state of ocean ecosystems. Many of the bacteria that thrive 
in low oxygen regions of the oceans generate nitrous oxide 
and methane, both very powerful greenhouse gases. And fi-
nally, models suggest that at the unrealizable limit—if one 
fertilized all of the HNLC regions of the oceans for 100 years—at 
most 1 Gt C y–1 would be sequestered in the ocean. This —
even if achievable, which it is not— would not change the 
trajectory of global warming significantly. The cost would be 
a massive restructuring of ocean biogeochemistry, the long-
term consequences of which on the global biosphere are 
completely unknown.

Despite these limitations and concerns, calls for more re-
search on ocean fertilization as a geoengineering option per-
sist within the oceanographic community [5,61]. I suspect 
that implicit in these calls is the understanding that these 
experiments, regardless of purpose, are powerful tools for 
learning how ocean ecosystems function and hence of value 
in their own right. But one chooses to measure different things 
in mission-oriented research compared to basic research. If 
the talent and ingenuity among our scientific ranks is focused 
on seeing how much carbon one can generate and export to 
the deep ocean through fertilization, it will not be focused on 
understanding ocean ecosystems in all their complexity. This 
understanding is essential for the effective management of 
ocean resources and modeling the trajectory of ocean pro-
cesses in the face of climate change. 

It’s not just about climate

In August 2008, the Kasatochi volcano in the Alaskan cen-
tral Aleutian Islands erupted, delivering iron-rich volcanic 
ash to the ocean waters downwind. Satellite images of sur-
face ocean waters in the Gulf of Alaska revealed phyto-
plankton blooms downwind of the iron dust plume. The 
spatial and temporal relationship between the dust plumes 
and ocean blooms looked compelling [19], and the quantities 
of iron that could be delivered to the oceans via the dust 

were sufficient to account for a bloom [38]. In 2010, two 
years after the eruption and phytoplankton bloom, the re-
turns of sockeye salmon to the Frasier River were the largest 
on record—34 million fish. Some attributed this bumper crop 
of salmon to increased survival of juveniles caught in the phy-
toplankton bloom [40], but the causal link between the 
bloom and the salmon has been questioned [34] and contin-
ues to be debated [39]. While it is impossible for the non-
expert to judge which side of the debate is more compelling, 
attributing cause and effect to events so far separated in 
time, occurring in a complex fluid environment, and involving 
complex food webs, takes an enormous leap of faith.

Despite limited—and contested—evidence linking iron 
dust supply and increased salmon returns, it was inevitable 
that someone would suggest that intentional iron fertiliza-
tion might be a way to enhance fisheries. Claims that global 
stocks of phytoplankton may be decreasing [3] had already 
triggered arguments that the oceans are in need of “nourish-
ment” [63]. The stage was set for the inhabitants of Old Mas-
sett Village, in British Columbia, whose livelihood has been 
greatly compromised by the decrease in salmon stocks in re-
cent years, to take great interest in the iron-salmon connec-
tion. Their Haida Salmon Restoration Corporation (HSRC) [59] 
hired a California businessman, Russ George, to fertilize a 
10,000 sq mile patch of ocean with 120 tons of iron sulfate/
iron oxide in the summer of 2012 [48]. The area fertilized was 
orders of magnitude larger than any of the scientific ocean 
fertilization experiments conducted to date. The experiment, 
described as an “ocean restoration project” by its leader [27], 
was conducted 200 miles west of the coast of British Colum-
bia where phytoplankton blooms are already a persistent fea-
ture in satellite images of ocean color. For their 2.5 million 
dollar investment in the project, the HSRC was allegedly 
promised not only return of the salmon runs by George, but 
also the sale of carbon credits for the atmospheric CO2 that 
would purportedly be sequestered as a result of the fertiliza-
tion. At present there is no market for the latter and no es-
tablished mechanism for verifying the amount of carbon se-
questered as a result of ocean fertilization. 

The Haida Gwaii Fertilization project constitutes the first 
“rogue” geoengineering experiment in history and the largest 
iron fertilization experiment to date. It is considered “rogue” 
because these types of experiments are not allowed in inter-
national waters under the 2008 statutes of the UN London 
Convention, except for “legitimate scientific purposes”. If not 
legitimate, they are considered disposal at sea which is pro-
hibited under the Canadian Environmental Protection Act. 
Astonishingly, the Haida Gwaii experiment did not receive 
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public attention until a year after it had been completed. The 
story was uncovered by the Canadian environmental wathdog 
group Action Group on Erosion, Technology and Concentra-
tion (ETC) and released in a series of articles by the Vancouver 
Sun [35]. A “legitimate scientific experiment” of this scale 
would not have gone undisclosed for this length of time.

There is nothing published in the scientific literature 
about the HSRC experiment and data have not been made 
public. But oceanographers familiar with the region say that 
it would be very difficult to differentiate between a natural 
bloom of phytoplankton and one resulting from the addition 
of iron [58]. At the moment the entire experiment is under 
investigation by Environment Canada. Meanwhile, the Lon-
don Convention of the International Maritime Organization 
[62] was recently amended to tighten the restrictions sur-
rounding ocean fertilization. A permit is now required for 
“any activity undertaken by humans with the principal inten-
tion of stimulating primary productivity in the oceans” and 
will be granted only for “legitimate scientific research taking 
into account any specific placement assessment framework.” 

While this new, stricter regulation will serve to discourage 
unauthorized ocean fertilization experiments, it also makes 
more difficult the small-scale experiments that are effective 
tools for oceanographers trying to understand the function 
of ocean ecosystems [6]. This is unfortunate as it is only by 
perturbing a complex dynamic system that one can get a 
glimpse of the connections that regulate and stabilize it. As 
John Martin argued, ‘bottle experiments’—a standard 
oceanographic experimental tool—exclude higher trophic 
levels and eliminate physics, giving us a distorted picture of 
the full consequences of any experimental perturbation. 
There is no substitute for unenclosed nutrient enrichments 
on a relatively small scale, but large enough to preserve 
physics and be able to measure some food web consequenc-
es. A particularly promising technology for these types of ex-
periments is simple pumping systems to move nutrient-rich 
deep water to the surface, simulating ocean upwelling. These 
would allow us to study, experimentally, the response of the 
microbial community to this natural, episodic, ocean pro-
cess. Unfortunately, the technology is already on the radar 
screen for several geoengineering applications [26], and sev-
eral patents have already been filed on “artificial ocean up-
welling”. Were this technology to be used for basic research 
purposes, one can be certain that the experiment would be 
interpreted as a test of geoengineering potential, and the re-
sults would be co-opted and interpreted selectively by those 
with a profit motive. We can only hope that the specter of 
“rogue” experiments, commercial interests, and geoengi-

neering applications does not discourage legitimate small-
scale ecosystem experiments in the future. They could play a 
unique role in helping us to understand the biogeochemistry 
of the oceans and we are in desperate need of advancing this 
understanding at this point in Earth’s history.

Geoengineering goes mainstream

Ocean fertilization is but one of many proposed geoengineer
ing approaches for mitigating the effects of human activities 
on the Earth System [51]. Most of the approaches fit under 
two broad categories. They are either designed to sequester 
atmospheric CO2 or to manage the amounts of solar radiation 
reaching the Earth. The latter is an attempt to treat directly 
the symptoms of greenhouse gas emissions—i.e., warming 
Earth—whereas the former is directed at redistributing the 
global carbon inventory so less CO2 accumulates in the atmo-
sphere. While neither approach gets at the root cause of 
global warming, it strikes me that CO2 removal is much closer 
to the cause than is solar radiation management and should 
be considered remediation—i.e., “removal of a contami-
nant”—rather than geoengineering. Lumping both of these 
approaches under the rubric of geoengineering is not logical. 

Regardless of what is included under the definition of 
geoengineering, the concept is no longer a “fringe idea”. It 
made the transition to “legitimate inquiry” with the publica-
tion of two influential papers in 2006 calling for research on 
it [10,14]. And extensive report on the topic by the UK Royal 
Society followed [44], which concluded that “geoengineering 
is likely to be technically feasible, and could substantially re-
duce the costs and risks of climate change.” This firmly estab-
lished it as something to be considered seriously by the sci-
entific and engineering communities, and interest in the 
topic soared (Fig. 3). Just recently, the mention of 
geoengineering in the 2013 report of the International Gov-
ernmental Panel on Climate Change (IPCC) [60] gave a signifi-
cant boost to its global visibility. In their summary to policy 
makers they wrote: “Methods that aim to deliberately alter 
the climate system to counter climate change, termed geoen-
gineering, have been proposed. Limited evidence precludes a 
comprehensive quantitative assessment of both Solar Radia-
tion Management (SRM) and Carbon Dioxide Removal (CDR) 
and their impact on the climate system.” The report does not 
shy away from highlighting the risks and enormous uncer-
tainties inherent in geoengineering but the mere mention of 
it by this influential international body boosted its legitimacy 
enormously.
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While there seems to be more focus on the policy, ethical, 
and governance dimensions of geoengineering than there is 
on the science itself (see Climatic Change Vol. 121, 2013), so-
lar radiation management via sulfur aerosols seems to be 
gaining momentum as the most ‘feasible’ technology for 
cooling the Earth. This is in part because research on it has a 
very strong and vocal advocate in David Keith [23], and in 
part because this technology has a natural analog in the cool
ing effect of volcanic eruptions [15] which renders it slightly 
less ‘alien’ than many other approaches. At the same time, it 
is also one for which the specter of “rogue” applications looms 
large. This concern has even lead to game theory analyses of 
the global politics of solar radiation management, which con-
cludes that the technology should theoretically lead to small 
but powerful coalitions of nations who would ultimately “set 
the global thermostat” [42]. While it is important that these 
types of scenarios are getting scholarly attention, they should 
not draw our attention away from facing the ecological un-
certainties inherent in any type of large-scale manipulation 
of the climate system. Biospheric feedbacks are represented 
in the most rudimentary of fashions in models of geoengi-
neering approaches—precisely because of their inherent 
complexity. There is one point upon which all models agree 
however: Once you start, you cannot stop. Termination of so-
lar radiation management after several decades would result 
in a rapid increase in global mean temperature, precipitation, 
and sea-ice melting [22].

Hindsight and humility

As we contemplate geoengineering we might draw some 
humility from our limited predictive capabilities, and the de-
gree to which hindsight has played a role in our understanding 
the complexities of the Earth system. We have been surprised, 
for example, to see that the global temperature anomaly has 
shown very little warming in the last decade even though 
greenhouse gases are increasing steadily. Do we understand 
why? We have some good hypotheses [49] but the precise 
fate of the “missing heat” is still not entirely understood. Only 
in hindsight have potential causes emerged. The Biosphere 2 
experiment in the 1990s [37] is a more “down-to-Earth” ex-
ample of our limited predictive capabilities when it comes to 
complex living systems. Eight people were enclosed in a 
sealed 3-acre structure designed to have all the ecosystem 
components to sustain them for 2 years. The experiment end-
ed prematurely because oxygen concentrations decreased to 
levels unsafe for the inhabitants. It was later learned that the 

decline was due to the bacteria in the organic-matter-rich soil 
whose respiration far surpassed the photosynthesis of the 
plants in the enclosure. What was puzzling, however, was that 
the CO2 in the enclosure’s “atmosphere” did not increase stoi-
cheometrically with the decreased oxygen, as one would ex-
pect if the latter were due to respiration. Where was the miss-
ing CO2? Ultimately it was shown that it had reacted with the 
cement structures in the enclosure [43]—a cause-and-effect 
chain that could only be established in hindsight. Yes, we do 
learn from our mistakes, and now that we understand this di-
mension of designing artificial biospheres we might get it 
right the next time. But it is one thing to make a mistake with 
a 3-acre experiment that people can walk away from when 
things do not go as planned. It is yet another to forge ahead in 
relative ignorance, hoping for the best, while geoengineering 
the Earth. As Margalef suggested: “if God has put us on this 
Earth, we have the right to make use of it, but we might as 
well do so with a modicum of intelligence” [52].
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Resum. El fitoplàncton marí té un paper central en la oxigenació de l’atmosfera del 
nostre planeta fa milers de milions d’anys. Per tant, aquests primers “geoenginyers” 
van ser crucials per a l'evolució de la vida a la Terra. Els seus descendents actuals, el 
cianobacteri marí Prochlorococcus és la cèl·lula fotosintètica més abundant del planeta. 
El seu descobriment, fa 30 anys, va servir com a recordatori del poc que coneixem sobre 
la complexitat de les xarxes tròfiques marines. La proposta de fertilització dels oceans, 
ja sigui per mitigar el clima o per millorar la pesca, continua guanyant adeptes dins la 
comunitat científica i el sector comercial. Si s’arribés a implementar, les conseqüències 
no desitjades d’aquesta i altres propostes de geoenginyeria poden ser enormes i 
impossibles de preveure.  

Paraules clau: Prochlorococcus · geoenginyeria · canvi climàtic · fertilització amb 
ferro
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